Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Interactions between sleep and feeding behaviors are critical for adaptive fitness. Diverse species suppress sleep when food is scarce to increase the time spent foraging. Postprandial sleep, an increase in sleep time following a feeding event, has been documented in vertebrate and invertebrate animals. While interactions between sleep and feeding appear to be highly conserved, the evolution of postprandial sleep in response to changes in food availability remains poorly understood. Multiple populations of the Mexican cavefish,Astyanax mexicanus, have independently evolved sleep loss and increased food consumption compared to surface‐dwelling fish of the same species, providing the opportunity to investigate the evolution of interactions between sleep and feeding. Here, we investigate the effects of feeding on sleep in larval and adult surface fish, and in two parallelly evolved cave populations ofA. mexicanus. Larval surface and cave populations ofA. mexicanusincrease sleep immediately following a meal, providing the first evidence of postprandial sleep in a fish model. The amount of sleep was not correlated to meal size and occurred independently of feeding time. In contrast to larvae, postprandial sleep was not detected in adult surface or cavefish, which can survive for months without food. Together, these findings reveal that postprandial sleep is present in multiple short‐sleeping populations of cavefish, suggesting sleep‐feeding interactions are retained despite the evolution of sleep loss. These findings raise the possibility that postprandial sleep is critical for energy conservation and survival in larvae that are highly sensitive to food deprivation.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Abstract Interaction between sleep and feeding behaviors are critical for adaptive fitness. Diverse species suppress sleep when food is scarce to increase the time spent foraging. Post-prandial sleep, an increase in sleep time following a feeding event, has been documented in vertebrate and invertebrate animals. While interactions between sleep and feeding appear to be highly conserved, the evolution of postprandial sleep in response to changes in food availability remains poorly understood. Multiple populations of the Mexican cavefish,Astyanax mexicanus,have independently evolved sleep loss and increased food consumption compared to surface-dwelling fish of the same species, providing the opportunity to investigate the evolution of interactions between sleep and feeding. Here, we investigate effects of feeding on sleep in larval and adult surface fish, and two parallelly evolved cave populations ofA. mexicanus.Larval surface and cave populations ofA. mexicanusincrease sleep immediately following a meal, providing the first evidence of postprandial sleep in a fish model. The amount of sleep was not correlated to meal size and occurred independently of feeding time. In contrast to larvae, postprandial sleep was not detected in adult surface or cavefish, that can survive for months without food. Together, these findings reveal that postprandial sleep is present in multiple short-sleeping populations of cavefish, suggesting sleep-feeding interactions are retained despite the evolution of sleep loss. These findings raise the possibility that postprandial sleep is critical for energy conservation and survival in larvae that are highly sensitive to food deprivation.more » « less
-
Abstract Animals inhabiting urban areas often experience elevated disease threats, putatively due to factors such as increased population density and horizontal transmission or decreased immunity (e.g. due to nutrition, pollution, stress). However, for animals that take advantage of human food subsidies, like feeder-visiting birds, an additional mechanism may include exposure to contaminated feeders as fomites. There are some published associations between bird feeder presence/density and avian disease, but to date no experimental study has tested the hypothesis that feeder contamination can directly impact disease status of visiting birds, especially in relation to the population of origin (i.e. urban v. rural, where feeder use/densities naturally vary dramatically). Here we used a field, feeder-cleaning experimental design to show that rural, but not urban, house finches ( Haemorhous mexicanus ) showed increased infection from a common coccidian endoparasite ( Isospora spp.) when feeders were left uncleaned and that daily cleaning (with diluted bleach solution) over a 5-week period successfully decreased parasite burden. Moreover, this pattern in rural finches was true for males but not females. These experimental results reveal habitat- and sex-specific harmful effects of bird feeder use (i.e. when uncleaned in rural areas). Our study is the first to directly indicate to humans who maintain feeders for granivorous birds that routine cleaning can be critical for ensuring the health and viability of visiting avian species.more » « less
An official website of the United States government
